An Algorithm Based on Theory of Constraints and Branch and Bound for Solving Integrated Product-Mix-Outsourcing Problem

نویسندگان

چکیده مقاله:

One of the most important decision making problems in many production systems is identification and determination of products and their quantities according to available resources. This problem is called product-mix. However, in the real-world situations, for existing constrained resources, many companies try to provide some products from external resources to achieve more profits. In this paper, an integrated product-mix-outsourcing problem (IPMO) is considered to answer how many products should be produced inside of the system or purchased from external resources. For this purpose, an algorithm based on Theory of Constraints (TOC) and Branch and Bound (B&B) algorithm is proposed. For investigation of the proposed algorithm, a numerical example is presented. The obtained results show the optimal result by the new algorithm is as same as the results of integer linear programming.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving the integrated product mix-outsourcing problem using the Imperialist Competitive Algorithm

The integrated product mix-outsourcing optimization is a major problem in manufacturing enterprise. Generally, heuristic or meta-heuristic solution approaches are used to optimize such problems. Heuristic approaches for these problems include Theory of Constraints (TOC) and Standard Accounting. Sometimes heuristic approaches are inefficient especially in large problems and instead, in these cas...

متن کامل

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

Solving product mix problem in multiple constraints environment using goal programming

The theory of constraints is an approach to production planning and control that emphasizes on the constraints to increase throughput by effectively managing constraint resources. One application in theory of constraints is product mix decision. Product mix influences the performance measures in multi-product manufacturing system. This paper presents an alternative approach by using of goal pro...

متن کامل

A modified branch and bound algorithm for a vague flow-shop scheduling problem

Uncertainty plays a significant role in modeling and optimization of real world systems. Among uncertain approaches, fuzziness describes impreciseness while for ambiguity another definition is required. Vagueness is a probabilistic model of uncertainty being helpful to include ambiguity into modeling different processes especially in industrial systems. In this paper, a vague set based on dista...

متن کامل

Reframing the Product Mix Problem using the Theory of Constraints

This paper builds on prior work examining pedagogical strategies for the teaching of OR/MS. In particular, the authors focus on the use of framing as a pedagogical metaframework and extend the repertoire of frames in use presented elsewhere. The purpose of framing and reframing is to improve the understanding of problems and problematic situations by providing a means of developing and synthesi...

متن کامل

An extension of branch-and-bound algorithm for solving sum-of-nonlinear-ratios problem

This paper is concerned with a problem of maximizing the sum of several ratios of functions. We extend an algorithm, which has been designed to solve the sum-of-linear-ratios problem, for solving the sum-of-nonlinear-ratios problem. We also discuss the complexity of the problem and report the results of numerical experiments on the extended algorithm.

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 12  شماره 1

صفحات  167- 172

تاریخ انتشار 2019-03-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023